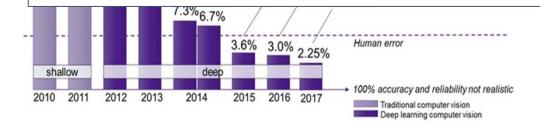


Identifying Model Weakness with Adversarial Examiner

Michelle Shu, Chenxi Liu, Weichao Qiu, Alan Yuille Oct 11th, 2019 Johns Hopkins University

Identifying Model Weakness with Adversarial Examiner

Why is there a mismatch?



https://news.stanford.edu/2018/05/15/how-ai-is-changing-science/

Motivation:

Turing test

Identifying Model Weakness with Adversarial Examiner

80% Accuracy -> **99.9% Accuracy**

Lesson 1:

The test should focus more on worst case than average case.

DOCKSTAD

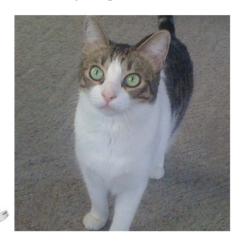
Lesson 2: The test should be *dynamic* instead of *fixed*

Solution: Adversarial Examiner (AE)

- Worst case instead of average case
- O Dynamic test set based on test history instead of fixed test set

Solution: Adversarial Examiner (AE) Definitions

Underlying Form z



3D object: Cat

Additional Information s

Is it bleping: yes

Viewing distance: close-up

•••

State: cute

Surface Form x = g(z, s)

2D image: Cat

Solution: Adversarial Examiner (AE)

In standard classification tasks:

Standard evaluation metric

VS.

AE's evaluation metric

$$E = \mathbb{E}_{x \sim \mathcal{P}}[L(f(x), y(x))] \approx \frac{1}{N} \sum_{i=1}^{N} L(f(x_i), y(x_i))$$

$$E_{\text{examiner}} = \mathbb{E}_{z \sim \mathcal{Q}}[\max_{s \in \mathcal{S}} L(f(g(z, s)), y(z))] \approx \frac{1}{N} \sum_{i=1}^{N} \max_{s_i \in \mathcal{S}} L(f(g(z_i, s_i)), y(z_i))$$

 $L(\cdot,\cdot)$ Loss function

P Underlying Distribution for x

 $g(z_i,s_i)$ transform function

 $f(x_i)$ Predicted Label

Q Underlying Distribution for z

 $y(x_i)$ Groundtruth Label

S Information to transform z to x

Relationship: AA and AE

In standard classification tasks:

Adversarial Attack (AA)

VS.

Adversarial Examiner (AE)

$$E_{ ext{attack}} pprox rac{1}{N} \sum_{i=1}^{N} \max_{\delta_i \in \Delta} L(f(x_i + \delta_i), y(x_i))$$

$$E_{\text{examiner}} = \mathbb{E}_{z \sim \mathcal{Q}}[\max_{s \in \mathcal{S}} L(f(g(z, s)), y(z))] \approx \frac{1}{N} \sum_{i=1}^{N} \max_{s_i \in \mathcal{S}} L(f(g(z_i, s_i)), y(z_i))$$

 $L(\cdot,\cdot)$ Loss function

P Underlying Distribution for x

 $g(z_i,s_i)$ transform function

 $f(x_i)$ Predicted Label

Q Underlying Distribution for z

 $y(x_i)$ Groundtruth Label

S Information to transform z to x

- 1. AE deals with underlying form z while AA deals with surface form x.
- 2. There is a "canonical" starting point for AA but AE starts with the entire space S.

Solution: Adversarial Examiner (AE)

Algorithm 1: Adversarial Examiner Procedure

Input: N samples $z_i \sim \mathcal{Q}$ and their true labels

 $y(z_i)$; Maximum number of

examination steps T; Loss function L;

Model f; Function g, Space S.

for i = 1 to N do

Initialize examiner with S

for t = 1 to T do

return $E_{examiner} = \frac{1}{N} \sum_{i=1}^{N} l_i^T$

 $s_i^t = \text{examiner.generate}()$

 $l_i^t = L(f(g(z_i, \underline{s_i^t})), y(z_i))$

Underlying Form z

Additional Information s

Is it bleping: yes

Viewing distance: close-up

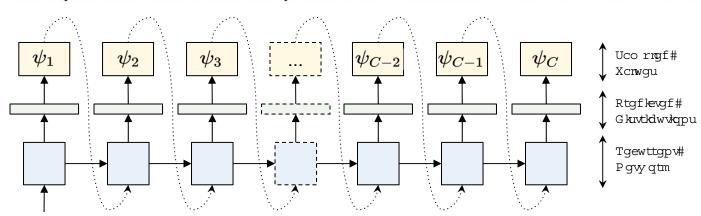
State: cute

$$l_i^t = L(f(g(z_i, s_i^t)), y(z_i))$$

examiner.update (s_i^t, l_i^t) Surface Form x = g(z, s)

Deep Learning Based AE (LSTM + Reinforcement Learning):

Let space S be the Cartesian product of C factors $S = \Psi^1 \times \Psi^2 \times \cdots \times \Psi^C$



$$\nabla_{\theta} \mathbb{E}_{P(s_{i}^{t};\theta)}[R] \approx \frac{1}{B} \sum_{b=1}^{B} \sum_{c=1}^{C} \nabla_{\theta} \log P(\psi_{(i,t)}^{c} | \psi_{(i,t)}^{c-1:1}) R_{b}$$

Deep Learning Based AE (LSTM + Reinforcement Learning):

Algorithm 1: Adversarial Examiner Procedure

Input: N samples $z_i \sim Q$ and their true labels $y(z_i)$; Maximum number of examination steps T; Loss function L; Model f; Function g; Space S.

for
$$i=1$$
 to N do

Initialize examiner with \mathcal{S} for t=1 to T do $\begin{vmatrix} s_i^t = \text{examiner.generate()} \\ l_i^t = L(f(g(z_i, s_i^t)), y(z_i)) \\ \text{examiner.update}(s_i^t, l_i^t) \end{vmatrix}$

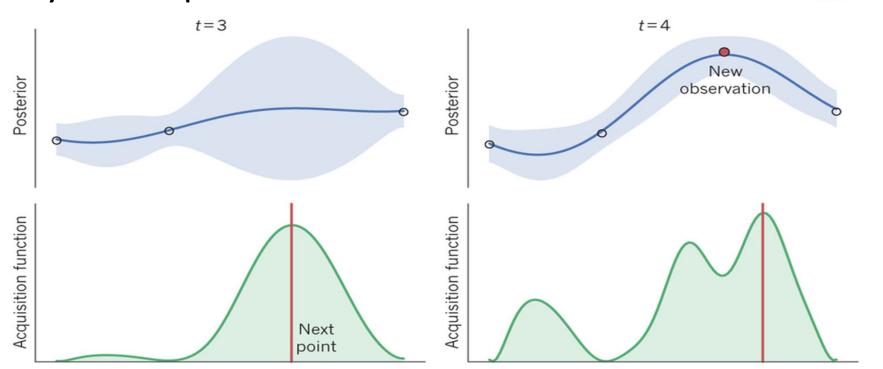
R Reward signal

 $\nabla_{\theta} \mathbb{E}_{P(s_{i}^{t};\theta)}[R] \approx \frac{1}{B} \sum_{b=1}^{B} \sum_{c=1}^{C} \nabla_{\theta} \log P(\psi_{(i,t)}^{c} | \psi_{(i,t)}^{c-1:1}) R_{b}$

return
$$E_{examiner} = \frac{1}{N} \sum_{i=1}^{N} l_i^T$$

Bayesian Optimization Based AE:

$$s_i^t = \operatorname*{argmax}_{s \in \mathcal{S}} a(s)$$



Bayesian Optimization Based AE:

Algorithm 1: Adversarial Examiner Procedure

Input: N samples $z_i \sim Q$ and their true labels $y(z_i)$; Maximum number of examination steps T; Loss function L; Model f; Function g; Space S.

for i = 1 to N do

Initialize examiner with ${\cal S}$

for
$$t = 1$$
 to T do

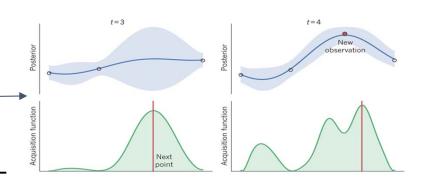
$$s_i^t = \text{examiner.generate()}$$
 $l_i^t = L(f(g(z_i, s_i^t)), y(z_i))$
examiner.update(s_i^t, l_i^t)

return
$$E_{examiner} = \frac{1}{N} \sum_{i=1}^{N} l_i^T$$

$s_i^t = \operatorname*{argmax}_{s \in \mathcal{S}} a(s)$

Newly Observed Point

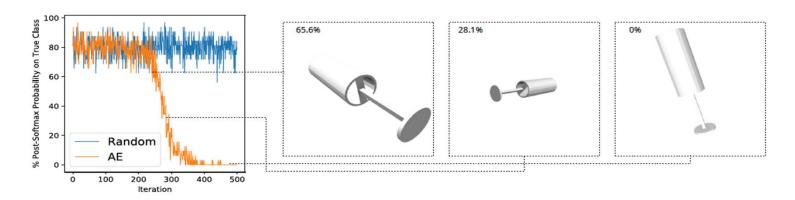
$$(s_i^t, L(f(g(z_i, s_i^t)), y(z_i)))$$



Experiments on ShapeNet:

- Model Type: ResNet34 vs. AlexNet
- Training Set: Varied training set size
- Multiple Weakness: Artificial Weakness
- Reversed Examination: Identify Model Strength

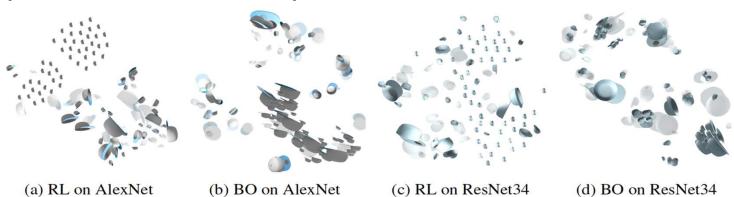
Experiments on ShapeNet:



	α_o	β_o	ζ_o	Γ_o	Γ_l	r_l	A_l	U_{l}	r_v	A_v	U_v	$ heta_v$
UB	2π	2π	2π	5	1	20	360	90	5	180	90	360
LB	0	0	0	0	0.3	8	0	-90	1	0	-90	0

Table 1: Upper bound (UB) and lower bound (LB) of factors for s: sun rotation angles $(\alpha_o, \beta_o, \zeta_o)$, sun energy (Γ_o) , point light energy (Γ_l) , point light distance (r_l) , point light location (A_l, U_l) , viewpoint angle (A_l, U_l)

Experiments on ShapeNet: ResNet34 vs. Alexnet



(b) BO on AlexNet

(c) RL on ResNet34

(d) BO on ResNet34

Model	Examiner	T = 0	T = 100	T = 300	T = 500	
AlexNet	RL	63.98%	65.91%	18.92%	2.27%	
Alexivet	ВО	60.05%	43.58%	29.98%	25.43%	
ResNet34	RL	69.03%	68.58%	38.86%	13.13%	
Reside134	ВО	64.19%	54.89%	48.07%	45.55%	

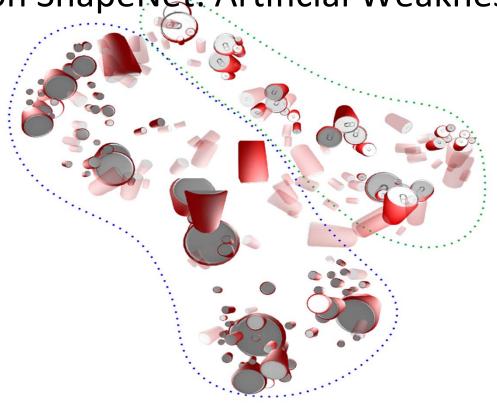
Experiments on ShapeNet: Varied Training Size

	m = 10	m=5	m=2	m = 1
RL	63.81%	57.43%	35.05%	18.92%
ВО	49.79%	43.06%	22.19%	10.92%

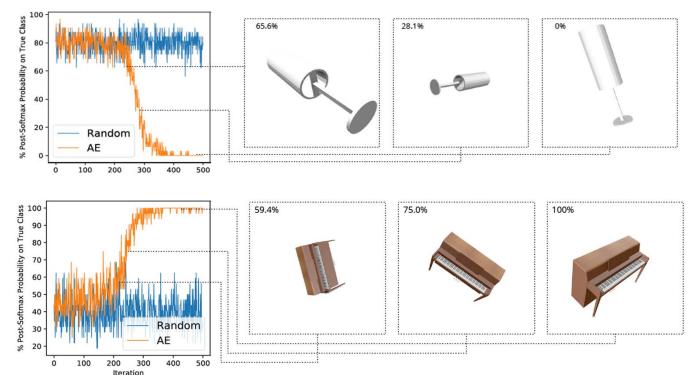
	α_o	β_o	ζ_o	Γ_o	Γ_l	r_l	A_l	U_l	r_v	A_v	U_v	θ_v
UB	2π	2π	2π	5	1	20	360	90	5	180	90	360
LB	0	0	0	0	0.3	8	0	-90	1	0	-90	0

Table 1: Upper bound (UB) and lower bound (LB) of factors for s: sun rotation angles $(\alpha_o, \beta_o, \zeta_o)$, sun energy (Γ_o) , point light energy (Γ_l) , point light distance (r_l) , point light location (A_l, U_l) , viewpoint distance (r_v) , viewpoint location (A_v, U_v) , viewpoint angle (θ_v) .

Experiments on ShapeNet: Artificial Weakness



Experiments on ShapeNet: Identifying Model Strength



Take-Home Message:

Motivated by the mismatch, we try to mimic some aspects of turing test:

- Worst case instead of average case
- Dynamic test set based on test history instead of fixed test set

Some Problems:

- Implicit form z and transform function g(z, s) is hard to obtain in some tasks
- CV People cannot abandon fixed datasets (yet)

Ongoing Experiment:

Apply AE to 6D Pose Estimation Task:

Thank You!